Chris joins The Dextercast for a review of Season 8, Episode 9

Chris was a guest on the Season 8, Episode 9 installment of The Dextercast. Catch the antics at http://www.thedextercast.com/. Or if you just want to jump right to the MP3 file, you can hit this link: http://www.thedextercast.com/files/podcast_85.mp3 or play the file directly. Thanks to Bob and Rachael at The Dextercast.

Notes on dry sump engines

Listener Stuart Watson sent us this email discussing dry sump engines, and their benefits and design details. Stuart pointed us at this link for more information. The majority of road bikes use wet sump lubrication, the ‘sump’ being a pan beneath the crankshaft where the oil is stored. A pump picks it up from here and forces it around the engine into the various bearings, spray jets and so on. After the oil has passed through the high pressure part of the system it drains back down into the sump purely under the influence of gravity. It’s simple and inexpensive, but there are disadvantages. The first is the size of the sump. Usually this will have to hold around 4 litres, maybe more. This is quite large – look at a 5 litre oil can to get an idea – and clearly it has to be at the lowest point, so the engine has to sit higher than might be ideal. Under hard acceleration or braking, or when the going is very bumpy, the oil in the sump can slosh around. In extreme cases this can mean the oil pump’s pick up tube becomes open to the air, and air bubbles are passed around the lubrication system, causing a lot of wear and damage. But it also means the oil can wash up against the crankshaft, which usually spins just above the surface of the sump oil. This causes a lot of drag, reducing engine performance as well as causing the oil to become foamy, which degrades its lubrication abilities.
The alternative is dry sump lubrication. Instead of storing the oil beneath the engine it’s kept in a separate tank somewhere else on the bike – in the frame on the Aprilia RSV Mille for example, or in the swingarm on air-cooled Buells. This means the engine can be positioned lower in the fraSemi_dry_sump_1me (very useful with naturally tall engines such as the V-twins mentioned), and the problems associated with oil sloshing around are eliminated. It’s easier to increase the oil capacity this way too, which means extended service intervals. The penalty is increased complexity (and hence cost), as you now need a separate tank and two oil pumps. One pump scavenges the oil draining down to the bottom of the engine and feeds it up to the oil tank, while a second, more powerful pump takes oil from the tank and feeds it back into the lubrication system under pressure. Some bikes though use a semi-dry sump system, including many off-road machines as well as the BMW. What this really means is that the system is to all intents and purposes a dry sump design, with two oil pumps, but the oil tank is still incorporated inside the engine cases. In the F800’s case it’s still stored beneath the engine, but not directly beneath the crankshaft. It’s a little more complex but by doing it this way the designers have more scope for lowering the engine and making it more compact.

Episode 154: A Garden Gnome?

ThePaceFINAL-300x116

Episode 154 - A Garden Gnome?

Aug 19, 2013

Reviews:

News:

Links:

Feedback:

  • Jorge Pena

  • Kevin Neatt

  • Doug Kneissl

  • Josh Davis

  • Steve Leis

  • Roland Cannon

  • Erik Johnson

Theme music composed and performed by Raoul Lowe

Rowe Electronics (via Aerostich) PDM60

You often hear "just put in a relay" when people talk about adding power connections to a bike, but what does that really mean? Many people find it sufficient to simply hook up their electrical gadgets directly to a battery, or to some "key-on" power source. This may be fine enough for something as low-draw as a GPS or satellite radio, but for things that draw more power, this is usually a recipe for long-term disaster. The usual solution is to add a relay-controlled power circuit. Why? A relay is just a fancy switch that, for the actuator part of the relay, typically draws very little power. This lets you tap into an existing power source - your tail light circuit or your ignition switch circuit - to power the relay. Doing so puts very little additional stress on the bike's wiring. The battery is then connected to the switched part of the relay, allowing high-draw devices full power without harming the bike's existing wiring. relay_diagram_02A typical need for a relay circuit might be when a rider wishes to install a set of driving lights that draw as much as 15amps. That's not the type of power requirement that would safely be provided by tapping into most of the bike's existing circuits. The graphic shows a basic relay circuit. This allows you to have the relay do all the "heavy work" while not impacting the bike's generally small and fragile wiring; if you were to hook up the larger road lights to the existing headlight circuit, you would likely overload that circuit causing blown fuses and overheated wires. A simple circuit to be sure, and it is very limited. What if I want more flexibility? Excellent question. The next upgrade to this circuit would be to replace "device" (in the graphic) with a fuse box. A fuse box will take current coming into it from the relay (or battery if directly connected) and spread it out to a number of fused circuits. This allows you to run several additional items into one centralized, convenient location for power, and to protect those additions via fuses. This has been the standard for... well, as long as there has been power systems in homes, cars, boats, industrial buildings, etc. Fuses and more modern circuit breakers are the standard protection for electrical devices. That can end up with a lot of additional wiring and space being used by the fuse block and relay. Some bikes accommodate the extra pieces better than others. A modern, electronic power distribution system may be the next best solution for some riders. Enter, the Rowe Electronics PDM60. adWpEKsThe PDM60 module replaces the fuse box and the relay system with a simple-to-use, compact, highly sophisticated electronic circuit controller. This intelligent device sense electrical shorts and, rather than blowing a fuse, simply turns off power that circuit. When the short is resolved, the PDM60 turns power back on to that circuit. No more burned wires, blown fuses, and best of all, dangerous shorts and burning wires are all but eliminated. The PDM60 wires up directly to the battery and the various protected circuits are powered on and off by 'trigger' wires. In its normal configuration there's one positive (12v+) and one ground (frame or 12v-) trigger, 6 total circuits ranging from 5amps to 15amps, and two circuits with a delayed shut off. This allows quite a bit of flexibility when deciding on what to hook up and how it should be handled. Most riders will need a simple setup where the PDM turns on the circuits when the bike's key is turned on. With something like this, the PDM would be hooked up directly to the battery, and the 12V+ trigger would be hooked up to anything that comes on with the bike's ignition switch, such as the tail light, head light, aux power connector, etc. The PDM draws about 1milliamp for the trigger, so it will have no practical impact on any existing circuits. During my installation, I chose to have the 12v+ trigger hooked up to my tail lights, and the PDM's main connections hooked directly to the battery. As for the circuits, I chose a 5amp delayed-off circuit for my phone charger plug, a 15amp instant-off circuit for my dedicated tire-pump plug, and a 5-amp instant-off circuit for my GPS connection. I mounted the PDM directly into the storage tray under my seat, and ran the main power wires to the battery through holes I drilled in the storage tray. The PDM comes with eyelets preinstalled on the main power wires; these eyelets should fit most normal motorcycle battery connectors. The electrical accessories are connected directly to the PDM60 on one of the supplied output wires. In my case, the purple wire was a delayed-off 5amp circuit, and the red wire was the instant-off 15amp output. I connected and soldered the colored wires to the appropriate 12v positive side of the accessory. The PDM also includes leads that slide into the big connector to provide 12v- (ground) connection; this alleviates the need to connect the negative side of the accessories to the battery or frame ground. Once all the accessory circuits were wired in, I tapped into the tail light wire for the 12v+ trigger. On my unit, this was the grey wire. Each of the power and trigger leads are marked with stickers. I stripped back the tail light wire's insulation and soldered the trigger wire to it, then taped it back up and put it back in its normal place. I use solder on all connections that are meant to be permanent. After years of automotive and motorcycle ownership and repair & maintenance, I simply don't trust most "tap connectors" or twist-n-tape connections. That's really all there was to it. The unit works as expected and as described, and the total installation took about 30 minutes. I forced-tested the ground faults by taking the output circuit wires and grounding them to the battery's negative post. The PDM shut off power to those circuits immediately without damage to any wiring and without any smoke, sparking or any other dangerous dramatic events. The unit I installed is a few years old. The newer models are firmware updatable and are software programmable; this allows the user to select specific amperage ranges for the various circuits, delayed or instant-off control of the circuits, and which circuits are controlled by the 12v+ or 12v- (ground) triggers. It's a very flexible and simple system, and I like it very much. The unit retails for $199. At nearly $200 it's considerably more expensive than a $12 relay and a $50 fuse block. Many riders might wonder why they should choose it. I can't and won't speak for Rowe Electronics on the matter, but I will offer my opinion. I've installed relay and fuse circuit systems on nearly every bike I've owned. In every case, I had to design the routing of wires, the placement of the fuse block and relay mounting, and in every case, it took me considerably longer than a half hour. In addition, relays can be compromised by moisture, and fuse blocks can corrode in high humidity or if they get wet. The PDM60 is waterproof, has no "moving" parts (covers over fuses, switch actuators in relays, etc), and is also small and easily mounted out of the way. The PDM is safer, less complex to use and is fully self-regulating. It's also fully CANBus compatible. And you'll never need to worry about keeping spare fuses around, or finding a Radio Shack if your relay craps out. Is that 'worth it' to you? I can't say. To me, it is... at least for a bike I intend to keep for longer term, or on which I want to rely for long distance travel. It's also very, very cool. That has certain value. The PDM60 is manufactured by Rowe Electronics and is distributed by several wholesalers and retailers, including Aerostich, the company from whom I got this unit and who is the world-famous manufacturer of the RoadCrafter and Darien series of riding gear. Rowe Electronics directs users to AltRider as their primary supporter and distributor of the PDM60.

AeroMoto Sport Air Leather Jacket review on Episode 153

The good folks at Competition Accessories offered us an AeroMoto Sport Air Leather Jacket for review on the show. I don't want to give too much away, but I'll say this... I'm giving it a 4.5 out 5 stars. Listen to the beginning of Episode 153 for the full review. About the jacket: aeromotoThe Aeromoto Corsa Pro pants and Sport Leather Jacket are available in both solid and perforated (Air) versions.Constructed of premium cowhide leather, 1.2mm in the body and 1.4mm over the impact areas, these Aeromotoleathers will keep you comfortable and protected without breaking the bank. CE approved armor is found at theknees, elbows, and shoulders, and knee sliders are included with the pants. Connection zippers are included on boththe pants and the jackets, so if you have been in need of an inexpensive, but good quality two piece leather suit, waitno longer! The Aeromoto gear is simply the BEST quality for the Money you will find.. It is an Everyday Clearance!
  • 1.2mm (body) to 1.3mm (impact areas) premium leather construction for optimum protection, durability and comfort
  • 10mm thick memory foam back protector
  • CE approved shoulder and elbow protectors
  • Perforated leather in key areas for maximum ventilation
  • Extra padding is also provided via padded panels throughout the jacket
  • Pleated leather panels are used in multiple locations for the finest non-binding fit possible
  • Multiple stitched main seam construction for maximum tear resistance
  • Removable and washable quilted liner with a pocket zips in over a permanent mesh lining
  • Moisture wicking neoprene in the collar for maximum rider comfort
  • Zip open air vents are positioned on the chest and back of shoulders
  • Pre-curved arms for a perfect look, fit and for maximum riding comfort
  • Two front hand warmer pockets
  • Two inner pockets; one with zipper closure
  • Two waist connection zippers for any type of pant attachment
  • Extra long zipper pulls are used on all zippers
  • World famous YKK zippers
About Competition Accessories: Competition Accessories has grown from a tiny garage in 1961, to be one of the nations largest sellers of motorcycle gear and accessories.  The Catalog Outlet store and national headquarters sit in a state of the art 34,000+ sq/ft building just off I-77 where customers can come in and have access to over $2 million worth of the best gear on the market.  Our site is a candy store for the motorcycle enthusiast. It carries just about everything from a $4 can of spray cleaner to a nearly $1000 Arai limited edition helmet.

Episode 153: Practically a Buell Blast

ThePaceFINAL-300x116

Episode 153: Practically a Buell Blast

Aug 6, 2013

Rally update:
  • Fuzzy Galore leading the points race
  • 02Tac running in 2nd place
  • Bringing up 3rd place is Sandi

Review:

News:

Links:

Feedback:

  • Dean McCurdy

  • Troy Cummings

  • Kevin Neatt

Theme music composed and performed by Raoul Lowe